
Li and Zhang ﻿Brain Informatics             (2022) 9:7  
https://doi.org/10.1186/s40708-022-00154-8

RESEARCH

A dynamic directed transfer function 
for brain functional network‑based feature 
extraction
Mingai Li1,2,3 and Na Zhang1* 

Abstract 

Directed transfer function (DTF) is good at characterizing the pairwise interactions from whole brain network and 
has been applied in discrimination of motor imagery (MI) tasks. Considering the fact that MI electroencephalogram 
signals are more non-stationary in frequency domain than in time domain, and the activated intensities of α band 
(8–13 Hz) and β band [13–30 Hz, with β1(13–21 Hz) and β2(21–30 Hz) included] have considerable differences for 
different subjects, a dynamic DTF (DDTF) with variable model order and frequency band is proposed to construct the 
brain functional networks (BFNs), whose information flows and outflows are further calculated as network features 
and evaluated by support vector machine. Extensive experiments are conducted based on a public BCI competition 
dataset and a real-world dataset, the highest recognition rate achieve 100% and 86%, respectively. The experimental 
results suggest that DDTF can reflect the dynamic evolution of BFN, the best subject-based DDTF appears in one of 
four frequency sub-bands (α, β, β1, β2 ) for discrimination of MI tasks and is much more related to the current and pre-
vious states. Besides, DDTF is superior compared to granger causality-based and traditional feature extraction meth-
ods, the t-test and Kappa values show its statistical significance and high consistency as well.
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1  Introduction
Brain–computer interface (BCI) is a technology that 
allows people with healthy bodies or motor impairments 
to communicate with external environment through 
their brains’ activity without the assistance of peripheral 
nerves and muscles [1, 2]. Motor imagery (MI) refers to a 
mental process by which an individual rehearses or simu-
lates a given action, for example, imaging the left or right 
hand movement without actually executing it. Motor 
imagery electroencephalography (MI-EEG) is commonly 
used in BCI owing to its advantages of high temporal 
resolution, high portability and few risks. Complex motor 

imagery can activate scattered areas of cortex, mainly 
including the somatosensory and somatomotor areas, 
and the brain activations vary with different MI tasks. 
MI-EEG is a multi-channel non-stationary and time–fre-
quency signal with spatial distribution characteristic, and 
it shows obvious individual differences. The MI respon-
sive frequency bands are not consistent for inter-/intra-
subjects, this reflects the subject-based characteristics of 
MI-EEG. The MI-based BCI interprets mental activities 
by identifying EEG signals of different MI tasks, and real-
izes the control and exchange of information between the 
brain and the outside world. The key to improve recogni-
tion accuracy is how to effectively use these characteris-
tics of MI-EEG for feature extraction [3].

In the past years, a variety of feature extraction meth-
ods have been used in classifying mental tasks. Com-
mon spatial pattern (CSP) is one of the most popular and 
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efficient algorithms which is particularly renowned for 
the high classification rates, notably in BCI competitions 
[4–6]. However, the classical CSP also has its limitations 
which are sensitive to noise, overfitting and individual 
variability. To tackle these issues, a series of CSP-based 
methods have been proposed, including ‘analytic signal’-
based CSP (ACSP) [6], correlation-based channel selec-
tion common spatial pattern (CCS-RCSP) [7], common 
complex-spatio spectral pattern (CCSSP) [8] and com-
plex common spatial patterns (CCSPs) [9]. The variants 
of CSP methods make full of the multi-channel and spa-
tial distribution characteristics of MI-EEG for feature 
extraction and achieve preferable classification accu-
racies. Regretfully, the information transfer and flow 
between channels have not received much attention. In 
fact, EEG researchers have tended to reveal that during 
performing even simple motor or cognitive tasks, many 
different functional areas widely scattered over the brain 
are mutually interconnected and exchange their informa-
tion with one another, thus making it hard to isolate one 
or two regions where the activity takes place [10]. Physio-
logically speaking, when humans are involved in a motor 
task, our brains function as a complex network with the 
interactions of specialized, spatially distributed but func-
tionally linked brain regions [11–15], contributing to 
the related brain functions. Therefore, it is an important 
strategy for ameliorating MI-EEG feature extraction to 
discover and use information flow between multi-chan-
nel EEG signals.

Recent years have witnessed that many researchers 
topologically characterize brain functional network by 
employing a mathematical framework called graph the-
ory [16–18]. In graph theory, a network is defined as a 
graph formed by a set of nodes interconnected by edges 
[19]. Nodes in large-scale brain functional networks 
usually represent regions of interest (ROIs) or EEG 
electrodes, while links represent functional connectiv-
ity [17, 18, 20–22]. Generally, we can construct directed 
or undirected brain functional networks depending on 
adopting symmetric or asymmetric metrics of coupling 
between two signals. Anyway, in order to obtain abun-
dant and exact properties, directed brain functional 
network is employed in this study. Granger causal-
ity (GC), as one of the commonly used techniques to 
construct a directed brain functional network, is aimed 
to illuminate casual temporal relations and directional 
nature of information flow for a pair of EEG channels. 
The basic notion of GC was originally conceived by 
Wiener [23], later adopted and formalized by Granger 
in the form of linear regression model. Granger’s cau-
sality concept has attracted a lot of people’s attention 
and has been extensively applied in the field of econom-
ics and neuroscience [24]. Since spectral properties are 

significant in biomedical signal analysis, extension of 
the concept to the frequency domain representation of 
time series was formulated by Geweke [25]. Although 
the above methods had lots of applications in many 
areas, it should be noted that they estimated directional 
information flow through bivariate approaches without 
using the whole covariance structure for a multivariate 
system. Unfortunately, it was reported that bivariate 
measures in certain cases could potentially give spuri-
ous connections and misleading results especially when 
some signals are fed from common channel sources, as 
is very likely in neurobiological systems [25].

To meet the demands, a full multivariate estimator, i.e., 
directed transfer function (DTF), was proposed to over-
come the limitations of bivariate autoregressive methods 
and characterize directional connectivity as well as spec-
tral properties of the interactions between any given pair 
of brain signals, and only one multivariate autoregressive 
(MVAR) model was required to be estimated simultane-
ously from all the EEG time recordings [26–28]. That is, 
all signals are regarded as members of one system and 
their mutual influences (not limited to pairwise connec-
tions) are considered. Subsequently, many DTF-based 
methods were developed. Ding et  al. [29] proposed a 
short time directed transfer function (SDTF), in which 
the entire data were divided into short overlapping time 
intervals for computation of DTF measure on each inter-
val. Ginter et al. [30] and Yi et al. [31] calculated SDTF to 
exhibit the casual relations of brain functional networks 
caused by motor imagery afterwards. Korzeniewska [32] 
first introduced a full frequency Directed Transfer Func-
tion (ffDTF) in which the normalization of DTF was 
performed over the full frequency band, then dDTF [32] 
was derived by multiplying ffDTF by partial coherence 
to only show direct connections while DTF and ffDTF 
reveal both direct and indirect connections. Billinger 
[33] showed the possibility of reliable classification of MI 
tasks through ffDTF and dDTF. Later in [34], dDTF was 
applied to feature extraction with power spectral density. 
Adaptive Directed Transfer Function (ADTF) was origi-
nally proposed by Wilke et  al. [35] for abnormal physi-
ological signals, such as those during epileptic seizures. 
The authors established time-varying coefficient matri-
ces by Kalman filter algorithm, constructed MVAAR 
models and got time-varying brain functional networks. 
In the following years, ADTF was also extended to the 
construction of time-varying brain function networks of 
other EEG signals. Li et al. [15, 36] used ADTF to inves-
tigate the time-varying P300 network patterns and evalu-
ate time-varying MI-EEG functional networks as well as 
observe MI information processing in different stages. 
Wang et al. [37] presented a novel wavelet-based directed 
transfer function (WDTF) method by combining the 
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wavelet decomposition and the directed transfer function 
(DTF) algorithm for patient-specific seizure detection.

To sum up, DTF and its extended methods have suc-
cessively been applied to construct brain functional net-
works and shown their effectiveness for different EEG 
signals. It is a potential problem that how to grasp the 
activated characteristics of MI-EEG signals to further 
improve DTF and find effective feature parameters to 
identify MI tasks. In order to fully represent the varia-
tion characteristics of MI-EEG in frequency domain, we 
will present a dynamic DTF, named as DDTF. The experi-
ments are conducted based on publicly available MI-EEG 
data from BCI competition and real acquisition data 
from real-world, and the results suggest that this metric 
not only extracts effective information, but also achieves 
a high classification accuracy while only one or two order 
frequency domain model is used to select the best fre-
quency band and calculate DDTF, demonstrating the 
adaptive and dynamic characteristics of MI-EEG.

The rest of the paper is organized as follows: in Sect. 2, 
the DDTF-based feature extraction method is described 
in detail. Experimental research is performed in Sect. 3. 
Section  4 provides the discussions, and conclusions are 
drawn in the final section.

2 � Methods
By adaptively selecting the frequency band and model 
order m, DTF is developed to generate DDTF, which is 
applied to construction and feature extraction of brain 
functional network, the main process is as follows.

2.1 � Preprocessing of MI‑EEG signals
Suppose that x0(t) =

[

x01(t), x02(t), . . . , x0N0
(t)

]T
∈ R

N0×K0 rep-
resents the original MI-EEG signals, where N0 and K0 
refer to the number of total channels and sample points, 
respectively.

Step 1: Common average removal (CAR) filtering.

	 x0(t) is spatially filtered with CAR filter at first 
and the filtered signal is expressed as

Step 2: Optimal sample interval selection.
	 The optimal sample interval [a, b] is selected 
with the most obvious event-related desynchroni-
zation (ERD)/event-related synchronization (ERS) 
physiological phenomenon and the MI-EEG signals 
in this time period are denoted as

(1)
x1(t) =

[

x11(t), x12(t), . . . , x1N0
(t)

]T
∈ RN0×K0 .

(2)
x2(t) =

[

x21(t), x22(t), . . . , x2N0
(t)

]T
∈ RN0×K ,

where K = b− a+ 1.

Step 3: Bandpass filtering.
	 The important information in EEG signals is 
often hidden in frequency with respect to allied 
cognitive tasks [38] and it is generally accepted 
that most of the motor imagery-related EEG sig-
nals are coded in the frequency band of 8–30  Hz 
[39]. What’s more, the β band (13–30  Hz), with β1 
or lower β sub-band (13–21 Hz) and β2 or higher β 
sub-band (21–30  Hz) included, has been reported 
to be good physiological predictors during motor 
imagery tasks compared to other frequency bands 
[40]. This information is significant, as it has been 
verified that the interdependency at different fre-
quency ranges may own distinct physiological func-
tions [41]. At this point, x2(t) is bandpass filtered to 
α band and β band ( β1 and β2sub band if necessary) 
and the filtered signals are later described as

Step 4: Channel selection.
	 Considering the computational complexity and 
feature information redundancy, N  channels are 
selected to cover as many brain regions as possible 
in the premise of guaranteeing their asymmetries, 
the signals after channel selection are represented as 
x
α
3 (t) =

[

x
α
31(t), x

α
32(t), . . . , x

α
3N (t)

]

∈ R
N×K , x

β
3 (t)

=

[

x
β
31(t), x

β
32(t), . . . , x

β

3N (t)

]

∈ R
N×K , 

x
β1
3 (t) =

[

x
β1
31(t), x

β1
32(t), . . . , x

β1
3N (t)

]

∈ R
N×K , x

β2
3 (t) 

=

[

x
β2
31(t) , x

β2
32(t), . . . , x

β2
3N (t)

]

∈ R
N×K  and later 

rewritten as

2.2 � The proposed dynamic DTF (DDTF)
In this subsection, DTF is improved, named as DDTF, in 
which the model order and frequency band are changing 

(3)


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
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



xα2 (t) =
�

xα21(t), x
α
22(t), . . . , x
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and adaptively selected by recognition rates. The detailed 
introduction takes α band for example.

Step 1: Let us consider a multivariate autoregressive 
model (MVAR), the present state of MI-EEG signals 
can be approximated by a weighted sum of pα previ-
ous values of all selected channels over α band, and a 
random noise series is also added:

where eα(t) =
[

eα1 (t), e
α
2 (t), . . . , e

α
N (t)

]T is the esti-
mation error which is a multivariate uncorrelated 
white noise sequence with zero mean. 
xα(t − r) =

[

xα1 (t − r), xα2 (t − r), . . . , xαN (t − r)
]T is 

an N × 1 vector of x(t) at a time lag ‘r’. 
A
α(1), Aα(2), . . . ,Aα(r) are the N × N matrices of 

coefficient matrices, e.g., A
α(r) is a matrix for 

describing the time-lagged influences of xα(t − r) on 
x
α(t) . Assume that each element of matrix Aα(r) is 

denoted as aαuv , the coefficient matrix can be set as 

A
α(r) =







aα11(r) · · · aα1N (r)
...

. . .
...

aαN1(r) · · · aαNN (r)






, the off-diagonal 

parts aαuv(r), u  = v quantify time-lagged influences 
between different channels of EEG signals xαu(t) and 
xαv (t) . The model coefficients can be got iteratively so 
as to minimize the error between the actual (meas-
ured) and predicted values. The model order pα , 
which denotes the maximum time lag, is used to dis-
close the influences of past states on the current 
state. The optimal model order is determined by 
Schwarz Bayesian Criterion (SBC) [42] and is used 
for MVAR model fitting to MI-EEG data.
Step 2: Once the MVAR model is fully constructed, 
the dynamic spectral analysis is performed based on 
Fourier transform. The Bmα

(

f
)

 , which has a varying 
order mα , is defined as follows:

where B0
(

f
)

= −I (I being the identity matrix).�t is 
the temporal interval between two samples, j repre-
sents the imagery unit, f  denotes frequency, and we 
have

where Xα
(

f
)

 and Eα
(

f
)

 are the transforms of xα(t) 
and eα(t) , respectively.
Step 3: Equation (7) can be rewritten as follows:

(5)x
α(t) =

pα
∑

r=1

A
α(r)xα(t − r)+ e

α(t),

(6)

B
mα

(

f
)

= −

mα
∑

r=0

A
α(r)e−j2π fr�t ,mα = 1, 2, . . . , pα ,

(7)B
mα

(

f
)

X
α
(

f
)

= E
α
(

f
)

,

Here Hmα
(

f
)

 is called the transfer matrix, and based 
on it we define the DDTF from channel s to channel l 
at frequency f as follows:

where Hmα

ls

(

f
)

 is the element in the lth row of col-
umn s of transfer matrix Hmα

(

f
)

 . In addition, a 
normalization procedure is further executed when 
[

θ
mα

ls

(

f
)]2 is divided by the quadratic sum of all ele-

ments in the lth row as follows:

which describes the ratio of influence from channel s 
to channel l with respect to the joint influence from 
all the other channels to channel l and has a value 
between 0 to 1. Value close to 1 means that the chan-
nel s has great impact on the channel l while value 
close to 0 shows that the channel s makes little con-
tribution to channel l.
Step 4: To get the mean value of Eq.  (10) under dif-
ferent frequencies, the accumulation over α band is 
applied:

Here f1f1, f2 equal to 8 Hz and 13 Hz (i.e., the lower 
and upper bound of α band), respectively. Perform 
the same steps for xβ(t),xβ1(t), xβ2(t) and we get

where f3, f4 are 21 Hz and 30 Hz, respectively.

2.3 � Brain functional network construction based on DDTF
ϒ

mα

ls  reveals the direction and strength between two 
channels in the total α band. For example, ϒmα

12  repre-
sents the connection intensity from channel 2 to channel 
1 and vice versa. The brain functional network of α band 
then can be constructed with EEG electrodes as nodes 

(8)
X
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[
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,
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and ϒmα , the adjacency matrix (AM), as links between 
channels. Similarly, the brain functional networks of β , β1 
and β2 bands can also be constructed separately.

2.4 � Definition of feature parameters
Feature parameters can be obtained according to the 
brain functional networks and adjacency matrices. Given 
channel g (g = 1, 2,. . . , N) for example, the gth row of fea-
ture matrix ϒmα ,ϒmβ , ϒmβ1 and ϒ

mβ2  are summed to 
acquire the inflow information to channel g for α, β ,β1 
and β2 bands, respectively:

As a logical sequence, the outflow from channel g is 
obtained by summing the gth column of adjacency matrix 
for each band as follows:

Inflow characterizes the total information received 
by a particular destination channel g from other chan-
nels while outflow describes gross messages transmitted 
from the given source node g to the rest of network. Both 
explore the information interaction processes between 
specific areas of the brain and other regions.

Furthermore, the inflow and outflow are combined to 
define information flow (similarly, we take the channel g 
as an example):
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Information flow indicates the role of channel g play-
ing in the process of information transmission. The larger 
information flow is, the greater contribution g has to 
other channels. Conversely, it means that there is barely 
no or very little info from channel g when the value is 
approaching to 0.

2.5 � Construction of a feature vector
Let us take α band for example, there is an 
OUTmα

(

g
)

 and IFmα
(

g
)

 for channel g, OUT
mα and 

IF
mα can be obtained when the features related 

to all the N channels are assembled, namely, 
OUT

mα
=

[

OUTmα (1), OUTmα (2), . . . , OUTmα
(

g
)

,

. . . , OUTmα (N )] ∈ R
1×N , 

IF
mα =

[

IFmα (1), IFmα (2), . . . , IFmα
(

g
)

, . . . , IFmα (N )
]

∈ R1×N  , 
where N means the number of selected channels. They 
are fused in serial to form the network feature vector of 
α band, namely Fmα:

Analogously, feature vectors of β , β1 or β2 band can be 
acquired as follows:

After this process, feature vectors at a characteris-
tic frequency for those directed interconnections are 
input to SVM classifier to discriminate different motor 
imagery tasks.

2.6 � Feature evaluation by SVM
Given each mα , we have the corresponding features Fmα 
and accuracies Accmα . Similarly, Fmβ and Accmβ can be 
obtained when MI-EEG signals are filtered to β band. 
As is said before, motor imagery response frequency 
bands are not consistent for each individual subject. 
Therefore, it is of vital importance to find subject-
specific frequency band, and accuracies in α band and 
β band are compared. Suppose Accmα are higher than 
Accmβ , it means α band is the final frequency band we 
are seeking for. Instead, the best classification accu-
racy is hidden in β band. Filter MI-EEG signals to β1
(13–21  Hz) and β2 band (21–30  Hz), repeat the above 
operations and the best accuracy as well as frequency 
band can ultimately be acquired.

The DDTF algorithm used for brain functional net-
work-based feature extraction is as follows:

(16)F
mα =

[

IF
mα ,OUT

mα
]

∈ R1×2N .

(17)







F
mβ = [IFmβ ,OUT

mβ ] ∈ R1×2N

F
mβ1 =

�

IF
mβ1 ,OUT

mβ1

�

∈ R1×2N

F
mβ2 =

�

IF
mβ2 ,OUT

mβ2

�

∈ R1×2N
.
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Input: MI-EEG signals x0(t)

Preprocessing of MI-EEG signals

 Step 1. Common average removal (CAR) filtering

 Step 2. Optimal sample interval selection

 Step 3. Bandpass filter to α (8–13 Hz) and β band (13–30 Hz)

 Step 4. Channel selection, get xα(t) and xβ(t)

Adjacency matrix calculation based on DDTF

 Step 1. MVAR model fitting to xα(t) and xβ(t) , respectively

 Step 2. Calculate Bmα (f ) and Bmβ (f ) using Eq. (6)

 Step 3. Calculate DDTF and adjacency matrix of 
[

θ
mα

ls (f )
]2 , 
[

θ
mβ

ls (f )
]2

 
and ϒmα  , ϒmβ  using Eqs. (8) to (12)

Definition of feature parameters

 Step 1. Extract the features of inflow INmα (g) and INmβ (g) by Eq. (13)

 Step 2. Extract the features of outflow OUTmα (g) and OUTmβ (g) by 
Eq. (14)

 Step 3. Extract the features of information flow IFmα (g) and IFmβ (g) by 
Eq. (15)

Construction of a feature vector

 Obtain OUTmα , IFmα and OUTmβ , IFmβ , yield feature vector Fmα and 
F
mβ

Feature evaluation by SVM

 Compare Accmα with Accmβ

If Accmα are higher than Accmβ

Output: the best accuracy of α band, i.e.,αba

Else If Accmα are lower than Accmβ

Preprocessing of MI-EEG signals

 Step 1. Common average removal (CAR) filtering

 Step 2. Optimal sample interval selection

 Step 3. Bandpass filter to β1 (13–21 Hz) and β2 band (21–30 Hz)

 Step 4. Channel selection, get xβ1 (t) and xβ2 (t)

Adjacency matrix calculation based on DDTF

 Step 1. MVAR model fitting to xβ1 (t) and xβ2 (t) , respectively

 Step 2. Calculate Bmβ1 (f ) and Bmβ2 (f ) using Eq. (6)

 Step 3. Calculate DDTF and adjacency matrix of 
[

θ
mβ1

ls (f )
]2

 , 
[

θ
mβ2

ls (f )
]2 

and ϒmβ1  , ϒmβ2  using Eqs. (8) to (12)

Definition of feature parameters

 Step 1. Extract the features of inflow INmβ1 (g) and INmβ2 (g) by Eq. (13)

 Step 2. Extract the features of outflow OUTmβ1 (g) and OUTmβ2 (g) by 
Eq. (14)

 Step 3. Extract the features of information flow IFmβ1 (g) and IFmβ2 (g) 
by Eq. (15)

Construction of a feature vector

 Obtain OUTmβ1 , IF
mβ1 and OUTmβ2 , IF

mβ2 , yield feature vector Fmβ1 and 
F
mβ2

Feature evaluation by SVM

 Compare Accmβ , Accmβ1 and Accmβ2

Output: the optimal frequency band and the best accuracy

3 � Experimental research
3.1 � Data description and preprocessing
The proposed method was first examined in detail based 
on a publicly available motor imagery dataset, which was 

provided by BCI Lab, Graz University of Technology. The 
datasets generated and analyzed during current study is 
available in the BCI Competition III Dataset IIIa reposi-
tory, http://​www.​bbci.​de/​compe​tition/​iii [43]. After that, 
it was applied to a second motor imagery dataset which 
was acquired from a real-world experiment. The dataset 
is available from the corresponding author on reasonable 
request. For easy of description, the referenced datasets 
were renamed as Dataset A and Dataset B below.

3.1.1 � Dataset A: BCI competition III Dataset IIIa
The public EEG dataset considered originally consists 
of 60 EEG recordings referenced to the left mastoid and 
with the right mastoid serving as ground, the electrode 
position distribution is shown according to the scheme 
in Fig. 1. EEG was sampled at 250 Hz, it was online fil-
tered by a bandpass filter between 1 and 50 Hz to remove 
artifacts. Dataset consists of three subjects performing 
left hand and right hand motor imagery tasks. A training 
set and a testing set are available for each subject. Both 
sets contain 45 trials per class for subject 1 (labeled as 
‘k3b’), and 30 trials per class for subjects 2 and 3 (labeled 
as ‘k6b’ and ‘l1b’). The subjects sat in a comfortable chair 
with armrests and were instructed to perform a specific 
motor imagery task once the relevant cue was shown on 
a screen, until a fixation cross disappeared. Each trial 
lasted 8  s. After a trial began, the first 2  s was quiet, at 
t = 2  s an acoustic stimulus indicated the beginning of 
the trial, and a cross “+”was displayed; then from t = 3 s 
an arrow to the left or right was displayed for 1 s; at the 
same time the subject was asked to imagine left hand or 
right hand movement, respectively, until the cross dis-
appeared at t = 7  s. The subject took a break and then 
conducted the next experiment. The MI-EEG collection 
timing scheme is shown in Fig. 2. 

In the preprocessing stage, common average reference 
method was firstly applied to spatial filtering. Each trial 
extracted from the time segment between 3.5 and 7  s 
and was spectral filtered in α band (8–13 Hz) and β band 
(13–30 Hz) (If necessary, EEG signals would be filtered to 
β1(13–21  Hz) and β2(21–30  Hz) band as well). In order 
to reduce the computational complexity, 34 channels of 
MI-EEG were selected symmetrically to carry out the 
experiment, and the selected electrodes cover as many 
brain regions as possible. The chosen sensor numbers are 
1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 
33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 58, 59 and 

http://www.bbci.de/competition/iii


Page 7 of 21Li and Zhang ﻿Brain Informatics             (2022) 9:7 	

60, respectively. Renumber these 34 channel numbers as 
1–34 for subsequent experimental research.

3.1.2 � Dataset B: real acquisition data
The real MI-EEG data were acquired by Neuroscan EEG 
signal recording and analysis system. EEGs were collected 
using 64 Ag/AgCl electrodes placed according to the 
international 10–20 system. The subjects are 9 healthy 
graduate students aged between 23 and 26 (marked as 
S1–S9, respectively), including two females and seven 

males. All of them are right-handed and without cog-
nitive impairment. The MI tasks included imagining 
right-hand pronation and supination, and the sampling 
frequency was 1000 Hz. In order to ensure the quality of 
MI-EEG signals, the acquisition experiment of each sub-
ject was divided into 5 runs, one run consists of 20 tri-
als (10 for each of two possible classes), i.e., 50 trials per 
class for each subject. Each subject should be trained in 
2 runs of MI tasks before formal acquisition experiment 
to guarantee he/she was familiar with the experimental 

Fig. 1  Electrode positions of Dataset A

Fig. 2  Timing diagram of Dataset A
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process. Each trial lasted 8 s, and the timing diagram is 
shown in Fig. 3. The first 2 s was preparation period, the 
“+” cursor appeared on the screen; at t = 2  s the motor 
imagery prompt tone appeared, and the prompt video 
was displayed on the screen for 2  s, i.e., imagining the 
right-hand pronation or supination; the subject per-
formed the corresponding MI task according to the video 
prompt at 4–8 s; the end sound of MI task appeared on 

8  s, the subject took a rest and then proceeded to the 
next experiment. Thereafter, the original collected MI-
EEG signals were down-sampled to 250 Hz and the ocu-
lar artifacts were removed. Then, a CAR spatial filter was 
used for baseline correction. The 4.5–7.5 s MI-EEG was 
further intercepted and filtered to different frequency 
bands. Meanwhile, 28 channels covered by green circles 
in Fig. 4 are selected to reduce information redundancy 

Fig. 3  Timing diagram of Dataset B

Fig. 4  The selected channels of Dataset B
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and they are channels FPZ, AF3, AF4, F3, FZ, F4, FC5, 
FC1, FC2, FC6, T7, C3, CZ, C4, T8, CP5, CP1, CP2, CP6, 
P3, PZ, P4, PO3, POZ, PO4, O1, OZ and O2.

3.2 � Experimental results on Dataset A
3.2.1 � Adaptive selection of the best frequency band and m 

value for each subject
For subject ‘k3b’, MVAR were fitted to the preprocessed 
MI-EEG data (both α and β band) and the model order 
of α and β band were pα = 3 and pβ = 8, respectively. As 
is known to us all, the wider frequency band the sig-
nal, the more complex the signal is. Obviously, a higher 
model order is needed to match and describe the signal. 
Furthermore, Bmα

(

f
)

 and Bmβ
(

f
)

 were calculated accord-
ing to Eq. (6). Following the steps in Sect. 2, features Fmα 
and Fmβ were finally obtained and then assessed by SVM. 
For comparative research, experiments were also carried 
on MI-EEG signals filtered to 8–30  Hz with the model 
order of 10. The 10 × 10-fold cross-validation (CV) meth-
odology was used to eliminate the contingency in feature 
extraction of MI-EEG signals as well as increase the reli-
ability of experimental results, i.e., it uses nine observa-
tions to train the classifiers and the remaining one for 

testing the model. The final classification accuracy is 
the average of 10 runs [44], as is shown in Fig. 5a and m 
refers to the varying model order in subsequent sections.

It can be clearly seen from Fig.  5a that the highest 
recognition rate without frequency band selection, i.e., 
91.67%, is lower than 96.78%, which is the best accu-
racy after band selection. In addition, classification 
accuracies of β band are always higher than those of α 
band. Considering β band is broader and may contain 
redundant information, it is refined to find the most 
active band for recognition. Under this consideration, 
we separated β band into 2 sub-bands, i.e., β1 band or 
lower β band (13–21 Hz) and β2 band or higher β band 
(21–30 Hz). The same experiments were performed on 
MI-EEG signals in the two sub-bands, as is displayed in 
Algorithm. The model orders of β1 and β2 band were 5 
and final recognition rates are exhibited in Fig.  5b for 
better observations. In Fig.  5b, the signals in β2 band 
possess higher accuracies than those in β1 band except 
m is 1. Unbelievably and reasonably, the recognition 
rate reaches 100% when m is set to 2 in β2 band.

The same operations were carried on for subjects 
‘k6b’ and ‘l1b’, the average recognition rates with 

Fig. 5  Effects of different frequency bands and m values on the classification results for subject ‘k3b’ a α , β and α + β band; b β1 and β2 band

Fig. 6  Effects of different frequency bands and m values on the classification results for subject a ‘k6b’ and b ‘l1b’
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10 × 10-fold CV are demonstrated in Fig.  6a for ‘k6b’ 
and Fig. 6b for ‘l1b’, respectively.

Different from subject ‘k3b’, subjects ‘k6b’ and ‘l1b’ 
show better separability in α band comparing to β band 
under left/right hand motor imagery tasks. Nevertheless, 
subject ‘l1b’ performs better than ‘k6b’ and gets higher 
accuracies. This phenomenon perfectly tallies with sub-
ject-based characteristic of MI-EEG signals. Affected by 
internal and external environments, subjects show great 
diversities. Even for the same subject, the recognition 
rates vary a lot in various frequency bands, as shown in 
Fig. 5a, b. Moreover, classification results of MI-EEG sig-
nals filtered to 8–30 Hz are worse than those under adap-
tive frequency band selection ( α band) for subjects ‘k6b’ 
and ‘l1b’. All the above reveals that dividing EEG signals 
into varying frequency bands can improve the classifica-
tion performances.

Similarly, recognition rates get largely promoted when 
m is set to 1 or 2 instead of the original model order p 
despite in either frequency band for all the subjects. 
This is because MI-EEG signals are non-stationary in 
frequency domain, the information of previous 1 or 2 
moment is much more related to the current state and 
thus is more beneficial for recognition than all the infor-
mation is considered. According to Figs. 5 and 6, the MI-
EEG signals in β band have similar recognition rates with 
the model order of 8 and 1 while classification rates reach 
the highest with the model order of 2, which suggests the 
frequency domain model obtained by Fourier transform 
of time domain model cannot truly reflect the variation 
characteristics of MI-EEG in frequency domain. Last but 
not least, the best frequency bands, m values and average 
classification rates with 10 × 10-fold CV for each subject 
are summarized in Table 1.

3.2.2 � Classification rates without frequency band selection
In this section, the classification rates without fre-
quency band selection for 3 subjects are displayed in 
Fig. 7 for convenient observations.

By comparing the results in Fig. 7 with those in Figs. 5 and 
6, we can find the best results without frequency band selec-
tion for subjects ‘k3b’, ‘k6b’ and ‘l1b’ are 91.67%, 65.58% and 
78.00%, respectively, which are much lower than 100.00%, 
82.25% and 99.75% with frequency band selection. It further 
verifies that adaptive selection of the best frequency band 
for individual subject can improve the classification rates. 
In the meantime, it is observed that the best classification 
accuracies are achieved when m value was set to 2 for all 
the three subjects and this phenomenon coincides with the 
above ones. What’s more, accuracies gain a certain degree of 
improvement ranging from 1.75 to 4.39% under selection of 
m values, which is lower than 8.33–17.06% under selection 
of both best frequency band and m values. This indicates 
that the double selection of the best frequency band and m 
values for each subject can yield the best results, which dem-
onstrates the effectiveness of DDTF.

3.2.3 � Visualizations of adjacency matrices, brain functional 
networks, outflows and inflows

It is noted from the results in Sects. 3.2.1 and 3.2.2 that rec-
ognition rates get promoted when m equals to 1 or 2 in any 
frequency band for each subject, so we take one trial of ‘k3b’ 
in α band for example to see the distinctions of adjacency 
matrices, brain functional networks, outflows and inflows 
under different m values. In addition, we denote ‘LH’ task as 
imagine left hand movement and ‘RH’ task as imagine right 
hand movement for convenient expressions.

The adjacency matrices under different m values for 
‘LH’ and ‘RH’ tasks are expressed in Fig.  8. Horizontal 
and vertical axes represent the new channel number, ele-
ments in the matrices reveal the direction and strength of 
information between two channels. The closer the color 
is to red, the higher the intensity. On the contrary, the 
closer the color is to blue, the lower the intensity. Based 
on graph theory, the corresponding brain functional 
networks are constructed with EEG electrodes as nodes 
and the adjacency matrices as links between channels, 
as shown in Fig. 9. As shown in Figs. 8 and 9, channels 
located in the central parietal area, which are much more 
related with MI, have higher intensities. Conversely, 

Fig. 7  Effects of different m values on the classification results in 
α + β band for each subject

Table 1  Summarization of the best parameters for all subjects 
on Dataset A

Subjects Best frequency bands Best m 
values

Average classification 
rates with 10 × 10-fold 
(%)

‘k3b’ β2(21–30 Hz) 2 100.00

‘k6b’ α(8–13 Hz) 1 82.25

‘l1b’ α(8–13 Hz) 1 99.75
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channels far away from central parietal area have lower 
intensities because they are less related with motor 
activities.

Figures  10 and 11 demonstrate the outflows and 
inflows from all channels, respectively. Considering the 
spatial distribution of the networks, we can note from the 
figure that the electrodes located in the central parietal 
area, which are reported to be related with somatosen-
sory and motor activity [45, 46], have larger outflows. 
Meanwhile, the contralateral primary sensorimotor area 
was activated during MI when one of the upper limbs 
was involved, information originates mainly from right 
parts of the brain when imaging left hand movement and 
vice versa. It is generally accepted that the movement of 
a body is denominated by the contralateral part of the 
brain. The adjacency matrices, brain functional networks, 
outflows and inflows in β band of ‘k3b’ when m equals to 
2 are also visualized in Fig. 12 for comparison. It can be 
observed that there are considerable differences between 
α and β band, which further provides theoretical basis for 
our method.  

3.3 � Experimental results on Dataset B
Aiming a better insight of potential performance in 
real acquisition data, DDTF is extended to Dataset B. 
Under the same experimental procedure in Sect. 3.2, the 
10 × 10-fold cross-validation classification accuracies are 
shown in Fig.  13 when DDTF is applied to extract fea-
tures from 9 subjects, and the best parameters for each 
subject are summarized in Table 2. It can be found from 
Fig. 13 and Table 2 that the optimal frequency bands are 
varying for different subjects. Even for the same subject, 
the classification results over different frequency bands 
also have a significant disparity, which fully reflect the 
individual differences of MI-EEG. Therefore, the person-
alized selection of parameters will be helpful to improve 
the recognition rate for each subject. Not coinciden-
tally, for any frequency band of all subjects, the recogni-
tion rates are greatly improved when m is equal to 1 or 2 
instead of the original order p, which is consistent with 
the conclusion of Dataset A and further indicates the 
correctness and universality of DDTF.

Fig. 8  AMs of ‘k3b’ in α frequency band a m = 1 for ‘LH’ task, b m = 2 for ‘LH’ task, c m = 3 for ‘LH’ task, d m = 1 for ‘RH’ task, e m = 2 for ‘RH’ task and f 
m = 3 for ‘RH’ task
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3.4 � Comparative experiments on Dataset A
3.4.1 � Comparison with GC‑based brain functional network 

methods
To verify the validity of DDTF, some experiments were 
carried out to compare with GC-based brain functional 
network methods by which MI-EEG signals were filtered 
to 8–30  Hz and applied to construction of GC-based 
brain functional network, the extracted feature vec-
tors were fed to SVM classifier. The average recognition 
results of 10 × 10-fold CV are displayed in Fig. 14.

From Fig.  14, it is easy to see that the classification 
performance resulted by Time-domain GC (TGC) is not 
ideal, this is mainly because this method only considers 
the interactions in time domain while ignoring the spec-
tral properties of MI-EEG signals. Frequency-domain 
GC (FGC) uses both time and frequency information, 
which yields a slightly higher accuracies. However, these 
two methods just focus on information flow between 

two channels without considering the integrality of the 
whole brain. Despite the results of TGC and FGC being 
poor, DTF shows the advantages of multivariate autore-
gressive methods over traditional univariate methods for 
each subject in terms of classification accuracy. In addi-
tion, for each subject, the recognition rates obtained 
by using DDTF are significantly enhanced than those 
by using DTF. The time domain model and frequency 
domain model share the same model order in DTF, how-
ever, the frequency domain model cannot truly be used 
to construct and embody the changes of MI-EEG brain 
functional networks. Moreover, the individual differences 
of allied cognitive tasks are observed in DDTF, which 
produces better quality information. For all subjects, our 
method achieves relatively higher recognition accuracies 
than other GC-based methods, indicating the superiority 
of DDTF.

Fig. 9  BFNs of ‘k3b’ in α frequency band a m = 1 for ‘LH’ task, b m = 2 for ‘LH’ task, c m = 3 for ‘LH’ task, d m = 1 for ‘RH’ task, e m = 2 for ‘RH’ task and f 
m = 3 for ‘RH’ task
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3.4.2 � Statistical analysis

(1)	 Kappa coefficient

	 In this section, more statistical analyses were exe-
cuted to confirm the effectiveness of DDTF. The 
kappa coefficient, which is generally thought to be 
a more robust measure than simple percent agree-
ment calculation, takes into account the agreement 
occurring by chance. It is a common indicator for 
evaluating the performance of BCI systems [47]. 
The calculation of kappa coefficient is defined as:

where p0 indicates the classification accuracy, pe 
represents the probability of opportunity consist-
ency. For a two-class task, if the number of sam-
ples across classes is equal, then the value of pe is 
0.5. According to Eq. (18), the kappa coefficients of 
TGC, FGC, DTF as well as DDTF with 10 × 10-fold 

(18)k =
p0 − pe

1− pe
,

CV were calculated. The results are shown in 
Fig. 15.

	 Figure  15 indicates that DDTF achieves the highest 
kappa value among four methods for each subject. 
Especially compared to the original DTF, DDTF 
makes the kappa value increase by 0.39 for subject 
‘k6b’ and 0.45 for subject ‘l1b’. Although there are 
variations in kappa values for different subjects, the 
mean kappa value of DDTF is improved by 0.37, 
0.66 and 0.68 compared to DTF, FGC and TGC 
methods, respectively, which reveals that DDTF has 
better consistency in classification. Furthermore, 
the mean value of DDTF is 0.88, which is higher 
than 0.8, this illuminates a very good level of agree-
ment.

(2)	 t-Test
	 To further analyze the differences between DTF and 

DDTF statistically, a two-sample t-test is proceeded 
to inspect whether there is a significant difference 
when they are available for MI-EEG feature extrac-

Fig. 10  Outflows of ‘k3b’ in α frequency band a m = 1 for ‘LH’ task, b m = 2 for ‘LH’ task, c m = 3 for ‘LH’ task, d m = 1 for ‘RH’ task, e m = 2 for ‘RH’ task 
and f m = 3 for ‘RH’ task
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Fig. 11  Inflows of ‘k3b’ in α frequency band a m = 1 for ‘LH’ task, b m = 2 for ‘LH’ task, c m = 3 for ‘LH’ task, d m = 1 for ‘RH’ task, e m = 2 for ‘RH’ task 
and f m = 3 for ‘RH’ task

Fig. 12  Adjacency matrices, brain functional networks, outflows and inflows of ‘k3b’ in β frequency band a AM for ‘LH’ task, b BFN for ‘LH’ task, c AM 
for ‘RH’ task, d BFN for ‘RH’ task, e outflows for ‘LH’ task, f inflows for ‘LH’ task, g outflows for ‘RH’ task, h inflows for ‘RH’ task
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tion. Suppose that MDTF and MDDTF denote the 
mean values of tenfold CV accuracies generated by 
DTF and DDTF, similarly, S2DTF and S2DDTF stand for 
the variances, nDTF and nDDTF express the numbers 
of the results for the two methods, respectively. 
Then, the t-test statistic is calculated as follows:

(19)

t =
MDDTF −MDTF

√

(nDDTF−1)S2DDTF+(nDTF−1)S2DTF
nDDTF+nDTF−2

(

1
nDDTF

+ 1
nDTF

)

.

	 Define the null hypothesis is H0 : the results of DTF 
and DDTF originate from independent random 
samples from normal distributions with equal 
means; the alternative hypothesis is H1 : the results 
of DTF and DDTF come from populations with 
unequal means. The significance level is set as 
µ = 0.05 . The decision rule is to reject H0 , if:

(20)
p = P

{

t > tµ(nDDTF + nDTF−2)
}

≤ 0.05.

Fig. 13  Effects of different frequency bands and m values on the classification results for a S1, b S2, c S3, d S4, e S5, f S6, g S7, h S8 and i S9 on 
Dataset B
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	 It can be calculated that the values of p for 3 sub-
jects are 2.0402 × 10–16, 3.0029 × 10–22 and 
4.8337 × 10–19, respectively, and they are all less 
than 0.05. Hence, the null hypothesis H0 is rejected 
at the 0.05 significance level, which implies DDTF 
outperforms DTF in MI-EEG feature extraction.

3.4.3 � Comparison with multiple traditional feature 
extraction methods

CSP and its variants have been widely applied in fea-
ture extraction of MI-EEG and gained good recognition 
results based on BCI competition III Dataset. To further 
illustrate the feasibility of DDTF in this paper, the experi-
ments were conducted to compare with multiple CSP-
based methods in references [7–9, 47]. Table 3 illustrates 

Fig. 13  continued

Table 2  Summarization of the best parameters for all subjects 
on Dataset B

Subjects Best frequency bands Best m 
values

Average classification 
rates with 10 × 10-fold 
(%)

S1 β2(21–30 Hz) 2 84

S2 β(13–30 Hz) 2 76

S3 α(8–13 Hz) 1 77

S4 β(13–30 Hz) 2 81

S5 α(8–13 Hz) 1 80

S6 α(8–13 Hz) 1 79

S7 β2(21–30 Hz) 2 82

S8 α(8–13 Hz) 1 86

S9 β2(21–30 Hz) 2 78

Fig. 14  Comparison of average classification rates with GC-based 
BFN methods on Dataset A
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the detailed information. It is clear that DDTF achieves 
the highest recognition rate of 100.00% and 99.75% for 
subjects ‘k3b’ and ‘l1b’, respectively, and the average clas-
sification accuracy, i.e., 94.00%, is superior to the best 
one with 91.87% in the CSP-based methods. The vari-
ants of CSP methods extract features in consideration of 
multi-channel and spatial distribution characteristics of 
MI-EEG signals while pitifully neglecting the relation-
ships among EEG sensors. DDTF effectively excavates 
the interrelationship between multi-channel EEG signals, 
correctly analyzes the information exchange over the 
whole brain, and has better applicability in extracting fea-
tures from MI-EEG signals.

3.5 � Comparative experiments on Dataset B
In this section, DDTF was compared with the original 
DTF and GC-based BFN methods on Dataset B, and the 
results are shown in Fig. 16 and Table 4. It can be seen 
from Fig. 16 that for each subject, the classification accu-
racy of DTF is significantly higher than those of TGC, 
FGC and DTF when used for MI-EEG feature extraction. 
The average classification accuracy of DDTF increases by 
14% compared to DTF, and S6 gets the highest, i.e., 26%. 
The Kappa coefficients in Table 4 shows that DDTF has 
an significant improvement in different degrees for 9 
subjects, and the average Kappa value of DDTF is 0.61, 
which has an increase of 0.31, 0.41 and 0.38 relative to 
those of DTF, TGC and FGC, respectively, revealing that 
DDTF has the best consistency.

4 � Discussion
In this paper, DDTF was proposed for construction and 
feature extraction of brain functional network. In DDTF, 
the optimal frequency band is adaptively selected for each 
subject, which preferably detects the subject-based feature 
of MI-EEG, and Bm

(

f
)

 is defined with a varying order m , 
this is helpful to improve the classification rates. In addi-
tion, the best classification accuracy in any frequency band 
is achieved for each subject when m value equals to 1 or 2. 
To seek for the reasons, we took subject ‘k3b’ from Dataset 
A as an example and drew the changing curves of channels 
27 and 35 MI-EEG signals in time and frequency domains, 
which are illustrated as Fig.  17. Figure  17a–e shows the 
variations of channels 27 and 35 in time and frequency 
domains when filtered to α, β , β1, β2 and α + β frequency 
bands, respectively. As is known to all, MI-EEG signals are 
approximately stationary in short time intervals when the 
MVAR model is constructed in time domain. Therefore, the 
time domain MVAR model can express the changes of time 

Fig. 15  Comparison of Kappa coefficients with GC-based brain 
functional network methods

Table 3  Comparison with multiple CSP-based feature extraction 
methods

The bold values reflect the highest classification accuracies among all methods

Pcv and Pfix represent the CCSSP with and without automatic parameter 
selection, respectively

Reference number Methods Subjects Average 
accuracies 
(%)‘k3b’ ‘k6b’ ‘l1b’

[7] AC-CSP 97.80 63.30 94.20 85.10

[7] AC-RCSP 97.80 72.50 95.00 88.43

[7] CCS-CSP 98.90 79.20 95.80 91.30

[7] CCS-RCSP 98.90 80.00 96.70 91.87

[8] CSSSP 95.50 55.10 95.00 81.87

[8] BCSP 78.80 63.70 76.60 73.03

[8] ACSP 76.60 56.80 51.60 61.67

[8] Pcv 100.00 68.90 96.60 88.50

[8] Pfix 100.00 67.20 98.30 88.50

[9] CSP 67.50 70.00 53.30 63.60

[9] CCSP 95.00 90.00 83.30 89.43

This paper DDTF 100.00 82.25 99.75 94.00

Fig. 16  Comparison of average classification rates with GC-based 
BFN methods on Dataset B



Page 18 of 21Li and Zhang ﻿Brain Informatics             (2022) 9:7 

domain signals correctly. However, the non-stationarity of 
frequency domain signals becomes very intense because of 
the activated characteristics generated by motor imagery in 
either α or β frequency band, which can be clearly seen from 
Fig.  17. Although DTF can correctly reflect the quantita-
tive relationships between the time and frequency domain 
model, it may not effectively express the characteristics of 
the frequency domain MI-EEG signals. Therefore, we built 
the frequency domain MVAR model with model order of 1 
based on the MI-EEG filtered to α band, the results perfectly 
match with the non-stationarity of MI-EEGs in frequency 
domain. In [26–28], the time domain model and frequency 
domain model share the same model order, which ignores 
or weakens the non-stationarity of frequency domain sig-
nals. Particularly, DDTF is the same as DTF [26–28] when 
mα equals to pα while DDTF can represent the variation 
characteristics of MI-EEG in frequency domain and the con-
structed brain functional networks are more veritable and 
objective. The same experiments were also carried on other 
subjects and we got similar conclusions.

The adjacency matrices and brain functional networks 
in Figs.  8 and 9 show that with the increase of m values, 
information transfers get sharp augments and brain func-
tional networks are in the transition from transient state to 
stable state. Figure  10 indicates the electrodes with larger 
outflows are located in the central parietal area which are 
related to motor activity, and the information originates 
mainly from right part of the brain when imaging left hand 
movement and vice versa, which is in accordance with the 
well-accepted theory. What is said above further provides 
theoretical support for our method.

In addition, DDTF were compared with GC-based BFN 
feature extraction methods, and DDTF achieved the high-
est average classification accuracies based on two Datasets 
and 12 subjects, demonstrating its effectiveness in discrim-
ination of motor imagery tasks, as shown in Figs. 14 and 
16. Robustness test was also performed on both Datasets 
A and B by using Kappa coefficient, the results are shown 

in Fig. 15 and Table 4. It means that the proposed DDTF 
achieved the relatively higher Kappa values and even got 
greatly improvement for each subject compared to GC-
based methods and original DTF. This indicates DDTF 
has good adaptive ability to different subjects, the main 
reason may be that DDTF can dynamically determine the 
specific model order and related frequency bands accord-
ing to the cortical activation induced by motor imagery. 
Besides, a two-sample t-test statistic was designed to 
explore whether there was a significant difference between 
DTF and DDTF in MI-EEG feature extraction. The results 
implied the superiority and feasibility of DDTF in brain 
functional network-based feature extraction. This pro-
vided a new idea for extracting the features of MI-EEG as 
well as enhancing the adaptivity of feature extraction.

5 � Conclusions
A dynamic DTF, called DDTF, was developed in this 
study. It is calculated based on a dynamic frequency 
domain model with a lower order, and only the most 
related information is beneficial for recognition of MI-
EEG, i.e., the previous 1 or 2 moment is much more 
related to the current state, and the brain functional net-
work changes from transient state to stable state with 
the increment of model order. Meanwhile, the best fre-
quency band can be adaptively sought for each individual 
subject. This makes it more closely coincident with the 
subject-based characteristic of MI-EEG, yielding bet-
ter features and recognition rates. Extended experimen-
tal results have suggested that DDTF achieves excellent 
performance in brain functional network-based feature 
extraction. In the future study, we intend to integrate the 
DDTF-based brain functional network with other feature 
extraction methods to improve its property. In addition, 
it will provide a good prospect for disease diagnosis, sei-
zure detection and rehabilitation effect evaluation.

Table 4  Comparison of Kappa coefficients with GC-based BFN methods on Dataset B

Methods Subjects Average

S1 S2 S3 S4 S5 S6 S7 S8 S9

TGC​ 0.24 0.12 0.26 0.16 0.30 0.14 0.20 0.30 0.12 0.20

FGC 0.24 0.16 0.18 0.28 0.28 0.12 0.28 0.26 0.24 0.23

DTF 0.46 0.38 0.34 0.30 0.34 0.06 0.24 0.36 0.24 0.30

DDTF 0.68 0.52 0.54 0.62 0.60 0.58 0.64 0.72 0.56 0.61
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Fig. 17  The variations of channels 27 and 35 in time and frequency domains filtered to a α band, b β band, c β1 band, d β2 band and e α + β band
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